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Application of Entangled State Representation
to Deriving Normally Ordered Expansion
of 1-Dimensional Coulomb Potential

Hong-yi Fan1,2,4 and Liang Fu3

Received August 2, 2004; accepted August 26, 2004

Guided by Dirac’s advice that “When one has a particular problem to work out in
quantum mechanics, one can minimize the labour by using a representation in which
the representatives of the more important abstract quantities occurring in that problem
are as simple as possible,” we construct the entangled state representation to derive the
normally ordered expansion formula of the 1-dimensional two-body Coloumb potential.
The method of integration within an ordered product of operators is also used. Further
application of the new formula in some perturbation calculation is discussed.

KEY WORDS: bipartite entangled state; 1-dimensional bipartite Coulomb potential;
IWOP method.

1. INTRODUCTION

In recent years, quantum entanglement (Einstein et al., 1935) and entangled
states have received much attention of physicists because they play an essential
role in quantum communication and quantum computation (Bennett et al., 1895;
Ekert and Josza, 1996; DiVincenzo, 1995; Huches et al., 1997; Braunstein and
Kimble, 1998). In this work we show that the entangled state representations
can be applied to solving some two-body operator ordering problems. Operator
re-ordering (normal ordering, antinormal ordering, and Weyl ordering) is fre-
quently encountered in all fields relating to quantum mechanics. The normally
ordered expansions of operators are very helpful in calculating their coherent state
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expectation values (Gl‘auber, 1963; Klauder and Skargerstam, 1985) because

1〈z′| : f (a†
1 , a1) : |z〉1 = f (z′∗, z)〈z′|z〉, (1)

where the symbol : : denotes normal ordering, |z〉 is the coherent state,

|z〉1 = exp

[
−1

2
|z|2 + za

†
1

]
|0〉1, a1|z〉1 = z|z〉1. (2)

In Ref. (Louisell, 1973) Louisell devoted a whole chapter to studying operator
ordering problems. The approach he took is mainly via the coherent state repre-
sentation. In Refs. (Hong-yi Fan et al., 1987; Hong-yi, 2003; Wünsche, 1999) the
method of integration within an ordered product (IWOP) of operators is intro-
duced by which one can easily derive the normal product form of many operators.
For instance, recasting the completeness relation of coherent state into normal
ordering, ∫

d2z

π
|z〉11〈z| =

∫
d2z

π
: e−|z|2+za

†
1 +z∗a1−a

†
1 a1 := 1, (3)

and using the mathematical formula∫
d2z

π
znz∗meA|z|2+Bz+Cz∗

= e−BC/A
∑
l=0

n!m!

l!(n − l)!(m − l)!(−A)n+m−l+1
Bm−lCn−l , ReA < 0, (4)

we can directly put an
1a

†m
1 into normal ordering,

an
1a

†m
1 =

∫
d2z

π
znz∗m|z〉〈z| =

∫
d2z

π
znz∗m : e−|z|2+za

†
1 +z∗a1−a

†
1 a1 :

=
min(m,n)∑

l=0

:
n!m!

l!(n − l)!(m − l)!
a
†m−l

1 an−l
1 : . (5)

For another example, using the normally ordered form of completeness relation
of coordinate eigenstates (Hong-yi, 2003)∫ ∞

−∞
dx|x〉11〈x| =

∫ ∞

−∞

dx√
π

: exp[−(x − X̂1)2] := 1 (6)

where X̂1|x〉1 = x|x〉1, as well as the IWOP technique, we have obtain for n > 0
integer,

X̂n
1 =

∫ ∞

−∞
dx dx xn|x〉11〈x| =

∫ ∞

−∞

dx√
π

xn : exp
[ −(x − X̂1)2] :
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= 1√
π

:
[n/2]∑
l=0

�

(
l + 1

2

) (
n

2l

)
X̂n−2l

1 :, (7)

where � is the Gamma function; and (Hong-yi and Liang, 2003)

X̂−n
1 = √

π (−1)n :
∞∑

m= [n−1]
2

(−1)m

�(m + 1/2)

(
2m − 1

n − 1

)
X̂2m−n

1 : . (8)

While the normally ordered expansion of single partite operators has been
widely studied, there is less attention on the case of bipartite operators. However,
bipartite states can exhibit more interesting behaviors than their single-partite
counterparts, such as quantum entanglement, which is widely explored in quantum
information. Therefore, it is natural and justified to extend our attention to bipartite
operators and study their normally ordered expansions, which may be of potential
uses. Coulomb potential between two charged particles plays a dominant role
in many quantum mechanical dynamic problems. An interesting question thus
naturally arises: what is the normally ordered expansion of one-dimensional two-
body Coulomb potential (X1 − X2)−1 ? Here Xi = 1√

2
(a†

i + ai) is the coordinate
operator, [ai, a

†
j ] = δi,j , i, j = 1, 2.

One may naturally think of the two-mode coordinate repesentation |x1, x2〉 =
|x1〉 ⊗ |x2〉, and use its completeness relation to write (X1 − X2)−1 as

(X1 − X2)−1 =
∫ ∫ ∞

−∞
dx1 dx2

1

x1 − x2
|x1, x2〉〈x1, x2| (9)

and then use the IWOP method to perform the following integration

(X1 − X2)−1 = 1

π

∫ ∫ ∞

−∞
dx1 dx2

1

x1 − x2
: exp

[−(x1 − X̂1)2 − (x2 − X̂2)2
]

: .

(10)

However, the integral is not separable into two independent integrals over dx1

and dx2 respectively, moreover, when x1 = x2, there arises singularity. To avoid
such difficulty, instead of using the direct product of two single-mode coordi-
nate repesentation |x1, x2〉, we shall find a suitable representaion for diagonlizing
(X1 − X2)−1, this will greatly save our labouring. As Dirac’s guided in (Dirac,
1958): “When one has a particular problem to work out in quantum mechanics,
one can minimize the labour by using a represenation in which the representatives
of the more important abstract quantities occurring in that problem are as simple
as possible,” we find that by employing the entangled state representation |η〉,
(Hong-yi and Klauder, 1994; Hong-yi and Yue, 1996; Hongyi, 2002) which is the
common eigenvector of X1 − X2 and P1 + P2, to tackle this problem. The quan-
tum entanglement involved in a bipartite’s relative coordinate X1 − X2 and the
total momentum P1 + P2 was first discussed by Einstein-Podolsky-Rosen (EPR)
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in their argument that the quantum mechanics is incomplete (Einstein et al., 1935),
constructing the corresponding entangled state representation can express this kind
of entanglement in a transparent fashion. The work is arranged as follows: In Sec. 2
we briefly list the main properties, including its Schimidt decomposition, of |η〉.
In Sec. 3 we deduce the normally ordered expansion formula of (X1 − X2)−1. In
Sec. 4 we further deduce the normally ordered expansion formula of (X1 − X2)−n.

In Sec. 5 we apply the new formula in some pertubation calculations.

2. THE BIPARTITE ENTANGLED STATE REPRESENTATION

In Ref. (Hong-yi and Klauder, 1994) the explicit form of the common eigen-
vectors |η〉 of two particles’ relative position X = X1 − X2 and the total momen-
tum P = P1 + P2 are constructed in the two-mode Fock space

|η〉 = exp

[
−|η|2

2
+ ηa

†
1 − η∗a†

2 + a
†
1a

†
2

]
|00〉, (11)

where η = η1 + η2 is a complex number. It is remarkable that η’s real part and
imaginary part are respectively the eigenvalues of X1 − X2 and P1 + P2, i. e.,

1√
2

(X1 − X2)|η〉 = η1 |η〉 ,
1√
2

(P1 + P2)|η〉 = η2|η〉, (12)

where Pi = 1√
2i

(ai − a
†
i ). Using the IWOP method we can neatly prove that |η〉

states span an complete set

∫
d2η

π
|η〉 〈η| =

∫
d2η

π
: exp{−[η − (a1 − a

†
2 )][η∗ − (a†

1 − a2)]} := 1,

d2η = dη1dη2, (13)

or ∫
d2η

π
|η〉 〈η| =

∫
d2η

π
: exp

{ [
−η1 − 1√

2
(X1 − X2)

]2

−
[
η2

1√
2

(P1 + P2)

]2 }
:= 1, (14)

which bears some formal correspondence to (12) and thus is easily remembered.
Note that |η〉 are orthonormal to each other

〈η | η′〉 = πδ(2)(η − η
′
) = πδ(η1 − η

′
1)δ(η2 − η

′
2). (15)
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Thus |η〉 is qualified to be a quantum mechanical representation. The Schimidt
decomposition of |η〉 in the coordinate eigenvector space is (Hong-yi, 2002)

|η〉 = e−iη2η1

∫ ∞

−∞
dx|x〉1 ⊗ |x −

√
2η1〉2e

i
√

2η2x, (16)

and in mometum eigenvector space is

|η〉 = eiη1η2

∫ ∞

−∞
dp|p〉1 ⊗ |

√
2η2 − p〉2e

−i
√

2η1p. (17)

Using (14) and (12) we can write 1
X1−X2

as

1

X1 − X2
=

∫
d2η

π

1

X1 − X2
|η〉〈η| =

∫
d2η

π
:

1

η1
exp

{[
−η1− 1√

2
(X1 − X2)

]2

−
[
η2 − 1√

2
(P1 + P2)

]2 }
: . (18)

Now we see the advantage of using |η〉, that is the integral (18) is saparable into
two-independent integrals over dη1 and dη2. Integrating over η2 we have

1

X1−X2
= :

1√
π

∫ ∞

−∞
dη1

1

η1
exp

{ [
−η1− 1√

2
(X1−X2)

]2

:=:
1√
2π

∫
0

∞
dη1e

−η2
1

× exp[
√

2η1 (X1 − X2)] − exp[−√
2η1 (X1 − X2)]

η1
exp[A] :, (19)

where A ≡ − (X1−X2)2

2 . (19) has a singualrity for η1 = 0, so the integral over dη1

should be done in the sense of principal-value integration

1

X1 − X2
= :

1√
2π

∞∑
k=0

∫ ∞

0
dη1e

−η2
1

2k+ 3
2 η2k

1

(2k + 1)!
(X1 − X2)2k+1 exp[A] : (20a)

= :
1√
2π

∞∑
k=0

2k+ 1
2 �(k + 1

2 )

(2k + 1)!
(X1 − X2)2k+1 exp[A] : (20b)

= :
∞∑

k=0

(2k − 1)!!

(2k + 1)!
(X1 − X2)2k+1 exp[A] : (20c)

= :
∞∑

k=0

1

(2k+1)2kk!
(X1−X2)2k+1

∞∑
m=0

(−1)m

m!

(X1−X2)2m

2m
: (20d)

= :
∞∑

n=0

n∑
k=0

(−1)n−k

(2k + 1)2nk!(n − k)!
(X1 − X2)2n+1 : (20e)
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= :
∞∑

n=0

(
n∑

k=0

(−1)k
(
n

k

)
(2k + 1)

)
(−1)n

2nn!
(X1 − X2)2n+1 : . (20f)

Using the combinatorial formula, (Gould, 1972)
n∑

k=0

x

k + x
(−1)k

(
n

k

)
= 1(

n+x

n

) , (21a)

(20) becomes

1

X1 − X2
= :

∞∑
n=0

1(
n+ 1

2
n

) (−1)n

2nn!
(X1 − X2)2n+1 :

= √
π :

∞∑
n=0

(−1)n

�
(
n + 3

2

)
2n+1

(X1 − X2)2n+1 :, (22a)

this is the normally ordered expansion of the 1-dimensional two-body Coulomb
potential. We can check the above result by calculating

(X1 − X2)
1

X1 − X2
= 1√

2
(a†

1 + a1 − a
†
2 + a2) :

×√
π

∞∑
n=0

(−1)n

�(n + 3
2 )2n+1

(X1 − X2)2n+1 : (23a)

Using the formula

ai : f (a†
i , ai) :=: aif

(
a
†
i , ai

)
: + :

∂f

∂a
†
i

:, i = 1, 2, (24a)

we have

1√
2

(a†
i + ai) :

√
π

∞∑
n=0

(−1)n

�
(
n + 3

2

)
2n+1

(X1 − X2)2n+1 := 1√
2

:
√

π

∞∑
n=0

× (−1)n

�(n + 3
2 )2n+1

a
†
i (X1 − X2)2n+1 : + 1√

2
:
√

π

∞∑
n=0

(−1)n

�(n + 3
2 )2n+1

ai

× (X1 − X2)2n+1 : + 1√
2

[
ai, :

√
π

∞∑
n=0

(−1)n

�
(
n + 3

2

)
2n+1

(X1 − X2)2n+1 :

]

=:
√

π

∞∑
n=0

(−1)n

�(n + 3
2 )2n+1

Xi(X1 − X2)2n+1 : +1

2
:
√

π

∞∑
n=0

(−1)n(2n + 1)

�(n + 3
2 )2n+1

× (X1 − X2)2n : . (25a)
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Substituting (25) into (23) we have

(X1 − X2)
1

X1 − X2
=:

√
π

∞∑
n=0

(−1)n

�(n + 3
2 )2n+1

(X1 − X2)2n+2

× : + :
√

π

∞∑
n=0

(−1)n(2n + 1)

�(n + 3
2 )2n+1

(X1 − X2)2n :

=:
√

π

∞∑
n=0

(−1)n

�(n + 3
2 )2n+1

(X1 − X2)2n+2 : +1

+ :
√

π

∞∑
n=1

(−1)n(2n + 1)

�(n + 3
2 )2n+1

(X1 − X2)2n :

=:
√

π

∞∑
n=0

(−1)n

�(n + 3
2 )2n+1

(X1 − X2)2n+2 : +1

+ :
√

π

∞∑
n=0

(−1)n+1(2n + 3)

�(n + 5
2 )2n+2

(X1 − X2)2n+2 := 1.

(26a)

3. NORMALLY ORDERED EXPANSION OF (X1 − X2)−n

To derive the normally ordered expansion of (X1 − X2)−n, we notice that
there exists the mathematical formula (Gradshteyn and Ryzhik, 1980)∫ ∞

−∞

dx√
π

exp[−(x − y)2]Hn(x) = (2y)n, (27)

where Hn denotes the n-th Hermite polynomials. It then follows from (12) and
(14) that

Hn

(
X1 − X2√

2

)
=

∫
d2η

π
: Hn(η1) exp

{[
−η1 − 1√

2
(X1 − X2)

]2

−
[
η2 − 1√

2
(P1 + P2)

]2}
:=

∫
dη1√

π
: Hn(η1)

× exp

{[
−η1 − 1√

2
(X1 − X2)

]2}
:=

√
2n : (X1 − X2)n :,

(28)
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Comparing it with the well-known recurrence relation of the Hermite polynomials
H

′
n(x) = 2nHn−1(x) , we see the differentiation rule about the normal ordering

d

dX1
: (X1 − X2)n :=

√
2−n

d

dX1
Hn

(
X1 − X2√

2

)

= n
√

21−nHn−1

(
X1 − X2√

2

)
= n : (X1 − X2)n−1 :=:

d

dX1
(X1 − X2)n :,

(29)

which means d
dX1

can operate across the border : : of : (X1 − X2)n :. It then follows

1

(X1 − X2)n
= (−1)n−1

(n − 1)!

(
d

dX̂1

)n−1 1

X1 − X2

= (−1)n−1

(n − 1)!

(
d

dX̂1

)n−1

:
√

π

∞∑
m=0

(−1)m

�(m + 3
2 )2m+1

(X1 − X2)2m+1 :

= (−1)n−1

(n − 1)!
:
√

π

∞∑
m=0

(−1)m

�(m + 3
2 )2m+1

(
d

dX̂1

)n−1

(X1 − X2)2m+1 :

= (−1)n−1 :
√

π

∞∑
m=[ n−1

2 ]

(−1)m
(2m+1

n−1

)
�(m + 3

2 )2m+1
(X1 − X2)2m−2n+2 :

= (−1)n :
√

π

∞∑
m=[ n+1

2 ]

(−1)m
(2m−1

n−1

)
�(m + 1

2 )2m
(X1 − X2)2m−2n :, (30)

which is the normally ordered expansion of (X1 − X2)−n. In particular, we have

1

(X1 − X2)2
= :

√
π

∞∑
m=1

(−1)m
(2m−1

n−1

)
�

(
m + 1

2

)
2m

(X1 − X2)2m−2 :

= : −√
π

∞∑
m=0

(−1)m(2m + 1)

�
(
m + 3

2

)
2m+1

(X1 − X2)2m : . (31)

Similarly, we can use (12) and (14) to derive the normally ordered expansion of
1

P1+P2
,

1

P1 + P2
= √

π :
∞∑

n=0

(−1)n

�(n + 3
2 )2n+1

(P1 + P2)2n+1 : . (32)
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4. APPLICATION OF (22)

Using (22) the operation of 1
X1−X2

on the vacuum state is

1

X1 − X2
|00〉 = √

π

∞∑
n=0

(−1)n

�(n + 3
2 )2n+1

(a†
1 − a

†
2 )2n+1|00〉. (33)

From the normally ordered expansion of 1
X1−X2

we can immediately read off its
coherent state matrix element of

〈z′
1, z

′
2|

1

X1 − X2
|z1, z2〉 = √

π

∞∑
n=0

(−1)n

�(n + 3
2 )2n+1

×
(

z1 + z
′∗
1√

2
− z2 + z

′∗
2√

2

)2n+1

ez1z
′∗
1 +z2z

′∗
2 (34)

As an application of the above operator formula, we consider a system of two
harmonic oscillators, with the Hamiltonian being H0 = a

†
1a1 + a

†
2a2, supposing

this system is initially in its ground states. Suddenly, the two oscillators become
charged, which means a 1-dimensional Coulomb-like potential g

X1−X2
is abruptly

exerted. If the coupling intensity g is small enough, a perturbation calculation for
the ground state energy shift using (34) is

〈00| g

X1 − X2
|00〉 =

√
2

π
g. (35)

On the other hand, if the two oscillators originally rest on the coherent state∣∣z1, z′
2

〉
, and g, |z1|,

∣∣z′
2

∣∣ are small enough, then from (34) we know that the
perturbation results in (up to the second order of |z1| and

∣∣z′
2

∣∣)
〈z1, z′

2|
g

X1 − X2
|z1, z′

2〉 =
√

2

π
g

[
1 − 1

12

3∑
i=1

(
zαi + z∗

αi − z′
βi − z′∗

βi

)2

]
.

(36)

In summary, we have derived the normally ordered expansion formulas of
Coulomb potential 1

(X1−X2) and (X1 − X2)−n by virtue of the method of inte-
gral within an ordered product of operators. It is the entangled state representation
that brings the convenience and brevity for our calculation. We expect that the
new expansion formula would have more applications besides in perturbation
calculations.
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